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ABSTRACT

A laminar wake model is studied which assumes that the boundary
layer equations are valid in a shear layer on the axis of symmetry, and
that the local pressure is determined by a displacement interaction with
the inviscid outer flow. The finite difference method used places no
restrictions on the shape of the velocity profile. The qualitative
features of the solution are the same as those found by previous investi-
gators using integral methods, in that an otherwise arbitrary initial i
condition (the local froe stream Mach number) is determined by the fact
that only a particular value results in a physically meaningful solu-

tion. Two methods of finding the particular solution are investigated,

This research is a part of PROJECT DEFENDER, sponsored by the Advanced
Research Projects Agency, Department of Defense, under ARPA Order No.

254-62, monitored by Air Force Ballistic Systems Division under Contract
AFG4(694)-570,
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A Finite Difference Method for Solving the Laminar

Boundary Layer Equations Near a Wake Neck

INTRODUCTION

The qualitative features of the base flow region of supersonic blunt-
based bodies, showr schematically in ¥ig. 1, have been recognized for
many years. Much of the early work was aimed at determining the base
pressure, and {t was generally agreed, long before any quantitative theory
was available, that an interaccion between the shear laver and the outer
inviscid flow was important in determining its value. The Crocco-Lees1
mixing theory put this on a somewhat more quantitative basis. The model
on which this theory is based assumes that the boundary layer equations
are valid in the shear layer and that the local pressure is determined by
a displacement interaction with the inviscid outer flow. The effects of
the shear layer profiles are lumped into variables which must be deter-
mined independently, so that the theory is incomplete. However, the
qualit-“ive results show what behavior to expect from a more rigorous
solution of the same model. They found that there were an infinite
number of solutions to the equations, corresponding to all possible
choices of the base pressure. However, the only one with physical mean-
ing was the singular solution passing through a saddle-point type of
ity. The most familiar example of this type of behavior is in
the calculation of flow through a one dimensional nozzle. In that case,

the governing equation is

M(1 + 15_1 M%)

Q-'Q-
x>

1
dx A (a - MZ)

which can of course be integrated in closed form. H5wever, if one
chooges to consider 1 dA as a specified function of x, one can solve

A dX
the first ocder differential equation for any initial value of M,

1. L. Crocco and L. Lees, "A Mixing Theory for the Interaction Between
Dissipative Flows and Nearly Isentropic Streams,'" J. Aer. Sci. 19,
649-676 (1952).
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If the required colution is to have M < 1 in the converging section and
M > 1 in the diverging section, then M must pass through 1 and %ﬁ
through zero during the course of the calculation. If the initial choice
of M is too small, %% will pass througl. zero first, after which g%
becomes negative and the flow is subsonic everywhere in the nozzle.

If the initial choice is too large M - 1 first and the calculation tex-
mirates at M = 1, a solution with no physical meaning. The only solu-
tion which becomes supersonic in the diverging section corresponds to

d -
Eﬁ 0 and ¥ + 1 simultaneously.

This analogy is useful in obtaining an understanding of the nature
of the wake critical point, but it should no*t be carri~d too far. For
example, the pressure increases as the flow apprcaches the wake critical
point, indicating that the acceleration of the low speed portion of the
flow is produced by viscous forces, which are not present in the one
dimensional aozzle model. Relating the wake critical point to an aver-

age Mach number of unity is therefore not justified.

2 .
Recently, Reeves and lLees investigated this wake model in more detail,
using a two moment integral method to determine profile shape and wake
thickness. To insure the proper qualitative features, the Stewartson3

family of solutions to the Falkner-Skan eq °tion, f' 6%15), was used to
u

: Ys Mg

zero and firsc moments of the momedtum equation. Since a stagnation

descriie the profile shape, (%—,y) with g and v dc%ermined by the
pecint on the centerline occurs for only a single value of Y, the shape
of the profile at the wake stagnat.on point is arbitrarily predeter-
mined by the choice of the Stewartson famiiy and only the wake thickness
at this point is calculated.

2, B. L. Reeves and L. Lees, 'Theory of the Laminar Near Wake of
Blunt Bodies in Hypersonic Flow'" presented at AIAA 2nd Aerospace
Sciences Meeting, New York, January 1965, AIAA Paper No. 65-52,

3. K, Stewartson, 'Further Solutions of the Falkner Skan Equatior,"
Proc, Comb. Phil. Soc, 50, 454-465 (1954),

EOS RN-28, 10-65 2

]

3 w g

%

i

[N R e I

L R

P Bolad

A S S S

i
G ety

it

O

ke




s

Webb, Golik, Vogenitz and Lees4 investigated the model using the
polynomial profiles

2 37

u u / \

%— = :E. L :E [; L\ -2 il) ?
5 5 & L N5/ o/ _

and
4

I I f_s\, iRy (11_)
ug Y us \Ts \ "

u
. . e c .
in which a two moment method was used to find e and 5. He e, again

I::
=3
o

the profile shape at the wake stagnation point ig predetermined by the
choice of profile families, They then went ore step further and used
the Stewartson family f'(;%,p) to describe profile shape, using the
following substitutions:

£~ (u-uc)/(US-uc)

L

e Ty

By
u

where — is now no longer related to y. The third parameter was found
usirg ag additional moment of the momentum equ tionm.

The biggest drawback of the integral methods is that in order te
get accurate results, the family of profiles chosen mus be capable of
a reasonably good representation of the actual profiles over the entire
range of calculation. Since the actual proriles are not generally known
in advance, this requires the exercise of a considerable degree of judg-
ment and intuition on the part of the investigator. In this particular
problem, there is the additional obstacle of a gap between the body
boundary layer and the neighborhood of the rear stagnation point, in
which the boundary layer equations alome are clearly inadequate in

describing the flow between the centeriine and the outer inviscid flow.

———re

4. W.H. Webb, R.J. Golik, F.W. Vogenitz and Lester Lees, "A Multimoment
Integral Theory of the Laminar Supersonic Near Wake," Proc., 1965
Heat Transfer and Fluid Mechanics Institute, p. 168, Stanford U. Pr.ss,
Stanford, Calif., 1965.
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Since a different methcd of calculation is required in chis region, it

is not liliely that the profiles approaching the rear stagnation point

will fit smoothly int¢ a precunosen family, and it is not pnssible to

h.se an integral method calculation on an arbitrary initial profile.
ihils ey describes & finite difference method for solving the

boundary layer equatlons with the local pressuxe determined by a displace-

ment interactio. with the outside inviscid flow, There are no constraints

on profile chape, and the calculation begins with an arbitrary profile

at the wake stagnation point and proceeds downstream. The solutions care

found to fall into two families, depending on whether the initial locrsl

inviscid Mach aumber is smaller or larger than the value corresponding

to a singular solution. If the Mach number is smaller than this eigei-

value, the wala centerline velécity increases ror oaly a short distance

downstream, then decreases again until another stagnation point is

reached, the flow past this point being in the direction of the body.

If the initial local inviscid Mach numbher is larger than the eigenvalue,

the shear layer thickness decreases at an accelerating rate, unt’l the

inviscid flow intersects the axis as the shear layer disanpears. Both

of these types of behavior are valid solutions to the 2quations, but

only the sinpular solution has the appropriate downstream behavior,

that is, the wake velocity approaches the local freestream value.

Z0S RN-28, 10-65 4

LA EMMMSILZREN |



EQUATIONS

along the centerli

rear stagnation point,

dimensional, adiabatic, idea) gas, flow,

ne and normal to it,

The coordinate system as shown in Fig, 1 employs distances measured

The origin is at the base flow

The calculations will be limited here to two

The continuity and momentum

equations
du, du_ 3 du _ dp
pu 3o+ v - SyMyy T & (2)

can be transformed

*
u* g%; + v¥

vhere u* = u/ue, e

a8

vr =

b

g%

i

ECS RN-28, 10-65

into the form

dencting conditions

*)
%
Y

pudy
ES SQ
y
—1—& pu_dy
I‘S e
[o]

X
1
Sb 8 Cpeueuedx where C

p
1 e 2
peueZ 5 T “*:, (3)

at shear layer edge.

= =k (Chapman-Rubesin parameter,
e e assumed to be a function of
x only)

IR AT R




Sb = scale factor making equation dimensic. .ess

For ideal gas conditions, the right side of Eq. (3) can be written

a1 |Pe o 2|, i e 2 n
ds* pullp Ye | T M ds¥ (1 -u) (4
e e e

1t is convenient, now, to further transform Eq, (3) into a less familiar

form, with dependent variable

aur’

G = BY*/ (5)
and independent variables S*and.ﬁ, where

. uF - uk (6)

us= T © denvting conditions at the centerline

*
[ &8 _[ G '} % | [urq - umy 8¢ ac 1 Me
* = - u*® PE -u* = %
9s - uz)%} Buz Q1 Uc) ds 2(1-u¥) Ju M ds
1l oG _| 4 fEE_ x|\ G (7)
"l -u¥)] oT M dsx Y
c e

The boundary conditions appropriate to a wake are G(o) = G(1l) = O,

The fixed location of the boundaries in the u coordinate greatly

simplify the application of the finite difference method, and the use

%
of G instead of %%} as dependent variable makes it more convenient to

satisfy the differential equation at the centetline, where Eq. (7)

reduces to

*
- aug ) 1 B_E\ N 1
¢ ds* = 2(L - u¥) \d@ M

Je
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Here since

)

r |-

)u/'

2w (2
BYCBG

dependent variable becomes clear

is zero,

value,

9 Qu¥
du Y

is infinite

aug

BY/ , the advantage in using G as the

u*
when it is realized that, while \3Y

oG
so that aﬁ

generally has a finite

c

Equation (7) is in a modified form of the Crocco coordinate system

and, as is well known, solutions to the boundary layer equations in these

cocrdinates are not unique, in that a single solutior in the Crocco

coordinates contains an infinite number of distinct solutions in the

physical coordinates.

This occurs because the ucual third boundary

condition (the location of a reference streamline) of the momentum

equation in physical coordinztes cannot be imposed in the Crocco coordin-

ates, and the solutions corresponding to all possible values of this

boundary condition map into a single Crocco solution.

We wish, here, to

remove the ambiguity of the sclution of Eq. 7 by imposing the condition

tha~ the centerline {u = 0) is a

streamline.

Of the many possible ways

of accomplighing this, we choose to use an integral of the momentum equa-

tion, with %SL

ds*

An additional relation bec:iween

1
(1-ug)gu* (1 - uty &

[o}

set equal to zero at Y = 0:

R §

NG Me
du*

ds: and

1
dM
—= (1 - u*)g 1 - u*2
ds* c

VO
1 dMe
-ﬁz- Is is required

order to complete the specification of the problem. This is obtained

from an integrated form of the continuity aquation:

G

y du

'Cn

i-

B
v d in p_u
*
ue = gi = dx65 S £3 dy = tan @ (9
e = Psls

where 5

8% =g Q —L) dy (10)

P u5
! S
EOS RN-28, 10-65 7
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The logarithmic term in Eq. (9) is not bounded with increasing
5, and since ® is arbitrary, the inclusion of this term is difficult to
justify within the framework of the boundary layer theory, and it will
be neglected in these calculations.,

Equation (9), when transformed into the coordinate system of

Eq. (3), becomes Y
- y-1
— 1+ Xty ?
p_u % q S M 2 e
d © @ b )
= = \ T2 tan © (11)
d Sb ® e 1+ xE_ Mw
1/2

wnere it has been assumed for simplicity that p ~ T . Subscript ®

refers to a reference point in the flow, tzken here to be at 8 = 0,
Sb
The term ;— is like {E&; If the calculation were linked to a given

20
body, it would be convenient to divide this into a conventional
Reynolds number and a factor dependent primarily on body shape, but

for the present we will define

Re = ST (12)

T

A transformation of the displacement thickness definition, Eq. (10)

into the coordinate system of Eq. (3) gives:

2 v+1
P U, BF M_ TR el 2(y-13 1 _
e = PR R S - %* du
(- ud) 5 =1 2 (1-u*)
\ 5y 1 +12—- M, G
\2
(13)
1
sty ot £
0 v G

where, it should be noted, both of the shear layer integral functions

are bounded,

EOS RN-28, 10-65 8
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A final relation is required between the local flow angle € and
local inviscid Mach number Me. This could be obtained by means of a
detailed calculation of the inviscid trlew field, but for the purposes
of these calculations, we will assume that this relation is given by

the Prandtl-Meyer function:

0= = -2 (14)

The equations presented in this section, along with the appropriate
initial conditions, completely specify the problem.

The momentum boundary layer equation (7) requires an 1nitia1 G vs u
u
. O
profile, and auxilliary equations to evaluate u_, ” Eg; and IS* °

Equations (8), (11), (13) and (l4) relate

*
d E?umb
el y &, N g / . PO 0
dsx’ M ds’ ds* » Ugs Heo > 2t
e J Sb

If 9 is eliminated between Eqs. (14) and (11) and equation (13) is

differentiated the three remaining equations could be thought of as
PaliO*

\’S
b
where only two initial conditions are arbitrary because Eq, (13) pro-

simultaneous ordinary differential equations for ug, Me and ,

vides a relation between these and the third. Since one would normally
know u* if he knows the initial G vs. u profile, we w111 cqonsider

Uso
to be fixed, and then arbitrarily l=t ( = be

J initial

3 I3 {
specified by Eq. (13), leaving ‘Me) initial 28 et undetermined. M

(uc)initial

eo
will then be the eigenvalite and will be chosen so that the solution far

downstream has the appropriate behavior.

EOS RN-28, 10-65 9




METHOD OF SOLUTION

The momentum equation (7) can be solved readily by the use of an
implicit finite difference method, with the accuracy limited only by
the evailable computing time and computer memory size, Initial condi-
tions are unrestricted except for the requirement that they satisfy the
boundary conditions and not contain discontinuities. Exceptions to
these requirements can be successfully treated by using local analytical
solutions, but we do not expect any such cases to arise in the current
problem. The method uses the following finite differcnce approximations

for the linear (not bracketed) terms in Eq. (7):

é& _ .
35 = ©f, ju~ 6,5 /88 (15)
BZG 2
yaZ = ((,;,1+1,j+1+ Gy, 2 (G; g% Gy,9) +6yy yut Gyog, /200
G e & -G -G Y/ 4AG (7
du £+1,3417 TiH,5° Ci-1,5H7 Ci-1,)

G=1(G, ,.+G, )2 (18)

i,j+1 i,}
where 1 refers to the u coordinate
j refers to the S coordinate

The bracketed terms are evzluaied at i,j for an initial iteration, thea
averaged between i,j and {,j+l for succeeding iterations until they con-

verge to a limiting value. If N interior meshpoints in u are used, the

EOS RN-28, 10-65 10
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finite difference approximation to Equation (7) results in N simultan-

eous linear algebraic equations for the unknown G The equation

i,3+1°
£ -

at each point refers to Gi+1,j+1 and Gi-l,j+1 and therefore the equa

tions are coupled in such a way that the matrix of coefficients contains

3 bands consisting of the diagonal, and the bands immediately above and

below the diagonal. Such a set of equations is very quickly and easily

sclved by Gaussian elimination.

The auxiliary equations are solved simultaneously with the momentum

equation in the following sequence.
{du*

1. Guess \E§% 1

%

2., Calculate ug
i+l
3. Solve the momentum equation,dﬁvaluating bracketed terms at j

and using the previous e Eg% for the first iteration.

M
dM e
4, Calculate L 2 from Eq. (8).
M, dSk). ..,
e 3+1/2

5. Repeat three and four using averaged values until converged.

dM
Aot . 1 e
6. Calculate Mej+1 by finite difference integration of M Tds°
0_u O% €
7. Calculate from Eq., (13).
R j+

p_u o*
d ® oo
8. Evaluate Eg*(

—_— from Eq. (11)
Vs, )J'+1/2

9. Compare the finite difference derivative
[‘ P U, BF pmumf)*\

L\ Vs, 1 AN S )j

with that evaluated in Step 8.

/AS

EOS RN-28, 10-565 11
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(du#\

10, Use & systematic iteration procedure to guess a new ag%

j+l
which will give better agreement than in step 9 and repeatJ /2

from Step 1 to convergence.
du*

The modified Newton's method used for .terating on (EE%) generally
3+1/2

converges to 5 figures in about 4 iterations.

The principal drawback of the method is due to Step 9, where a finite
difference derivative is required. 1In order for this difference to main-
tzin significance, the profiles which determine ®* must be considerably
more accurate thcn one would normally require and the calculation there-

fore more time-consuming.

EOS RN-28, 10-65 12
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RESULT:

Typical results of this method of calculation are shown in Figs,

(2) and (3). The initial profile used was, for convenience, one of
the Stewartson family tabulated by Kennedy,5 where f" éf',B)—'VG (u, .1988)

with Ra= lésand Mezb Figure (2) shows the behavior of ——= ds% ‘fggresponding to
u

different assumed eigenvalues When Mg, is too large, begins to

~acl
ds¥
increase rapidly at SOHﬁ point in the calculation. This ig accompanied
by an increasz in %— 35* toward infinity from its initially negative
value, as shown in ng. (3). The centerline velocity is therefore
increasing rapidly at the same time that the inviscid flow just outside
the shear layer is turning rapidly in toward the axis of symmetry. In
the limit, the shear layer disappears entirely as the inviscid flow
intersects the axis. This limit is reached 4t a finite distance down-
Stream and constitutes a barrier past which the calculgfion cannot pro-
ceed, When the assumed eigenvalue Meo is too small, % becomes nega-
tive at some point in the calculation, after which the centerline velocity
ratio decreases until a second Stagnation point is reached, the flow on
the centerline past this point having its origin downstream rather than
upstream,

Only the eigen- solution belongs to neither of these two families
of non-physical solutions. The source of this singular behavior can be
more easily seen by differentiating equarion (13), and combining with

Eq. (11) to get an equation of the form:

dMe dug
8, Fox + a, 5% = a, (19)

5. E.D. Kennedy, "Wake-Like Solutinns to the Laminar Boundary Layer
Equations," AIAA J. 2, 225-231 (1964), .

EOS RN-28, 10-65 13




where a, a

ment thickness integrals can be eliminated by usirg the momentum equa-
G

tion). Egquation (8) has the same form {again eliminating %é* using ti

momentum equation):

dMe dug
= . (
by Fox tP T < D3 (20)
dMe dug
1 = = .
and these two equations solved for T and 35% give:
% -
ds a1b2 azbl D
% -
duc i alb3 a3b1 ) Hg
* -
ds a1b2 a2b1 D

Initially, N2 and D have a like sign, Nl the opposite sign, When Me

o]
is too large* N1 changes sign first, then D approaches zero so that
u

'&mﬁ*‘”: 5w = 2

the centerline velocity decreases, then D approaches zero.

When Meo is too small, N, changes sign first and

The eigen
solution has Nl and D (and therefore N2) changing sign simultaneously.
It should be noted that if onme ofdﬁhe equationgu£19) or (20) were to be

eliminated by specifying either 35;"; (S*) or d—gf; (S*), the singular

behavior would no longer occur. This suggests an alternate method of

solution of the equations which is described in Appendix I.

Of particular interest to those using the integral methords is the

nrofile shape obcained by the finite difference metiiod. A convenient

way of presenting the shape i. to plot G/Gmax Vs, G, as in Fig, 4. The
initial profile at the wake stagnation point (uc= 0) and the calculated

profile at u_= .3 u_ are shown. The initiai conditiors coincide with

one of the Stewartson family (8 = -.1988). The shapes of other Stewart-
son profiles, also plotted in Fig. 4 (8 = -.40, -,50) show clearly that

this family very accurately represents the calculated non-similar pro-

EOS RN-28, 10-635 14
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files. However, it shovld be remembered that the use of a Stewartson
profile shape at the wake stagnation point was arbitrary and there is
some doubt that such a choice is rralistic.

This study has shown that this particular viscous interaction
problem can be solved in a straightforward manner using a finite differ-
ence method. A considerable effort has beern made to extend the method
of calculation to regions ¢ reverse flow, without success. Several
hybrid methods have been investigated, in whiech integrals of the conser-
vation equations are used in the reverse flow region and finite d i{fer-
encas are used elsewhere, All of these attempts failed because the
profile shapes ured for the integral method did not have the proper

qualitative features. This sensitivity to the details of the profile
4

shape in the reverse flow region was also pointed out by Webb, et al ,

who used a momentum integral method over the entire shear laver, The
results of an integral method are in doubt whenever such sensitivity
exists, so it sppears that additional work is needed in the region
between the body and the wake stagnation point before any quantitative

results can be obtained from the intecraction model.

EGS RN~28, 10-65 15




APPENDIX I
INVERSE METHOD

Computing through a saddle point singularity is difficult even if
the equations are simple in form since the eigenvalue can be fsund only
to a limited number of significant figures. Assuvnung that one is then
close encgh to the critical point to make some kird of extrapolation
valid, the calculation can be restarted on the other side and proceed
from there without difficulty. However, when a partial difierential
equatio: is included in the set of equations, the computing time
involved in this procedure can become excess.ve. A considerable saving
in time would result from a method which did not require that such a
large number of signiticant fiéures be carried.

The method which will be descg&ked here has this property, and

cor.sists essentially of guessing agﬁgg*) and solving the momentum

. 1 e . .

equation, using Eq. (8) to give Mg ds* 5 T%f remaining auxiliary

equations are not satisfied (that is  d( )/ds» from Eq., (11) does
pu 6* b du*

not agree with A(j@g—'“)/AS* from Eq. (13), and a new guess of ——— dS* {S*)
is made in such a way that agreement improves in succeeding iterations.
There is no grarantee of convergence and ‘he key to the method is,
obviously, the type of iteratégg used,

For any given guess of gg¥ (§%), thed§0mentum equat’  and Eq. (8)
can be solved for G(u,S¥), u*(S*) and —l dS*(S ). The .aitial condi-
tions required for this solution are G(u o) and u*(O) d;The values of
Me(S*) do not appear in these equations, so that agg‘(s*) is found
without Sp cifying M anywhere, The initial condition needed to inte-
Ed
eigen-solution we are seeking Fas M = M aL the origin and Me“ Méoo

asy?pcotically far downstrean. Slnce M is known., we will integrate

i: -ég*(s ) in the upstream direction, assuming that the domain has

been chosen larpge enough to make the asymptotic value of Me reasonable

grate o (S8%) can thersfore be applied at any value of 3%, The

at the dowastream end. Since Me(¢o~nem only for the eigen-solution,

EOS RN-28, 10-65 16
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this means that if the procedure couverges at all, it must converge to

the desired sclution. dM

The fact that the differential equation and =— M dS* (S*) are
integrated in opposite directions introduces the major difficulty
encountered in applying the method, since it makes it impractical to
use a8 straightforward iterction scheme such as Newton's method. If they

U
. . ; . . c
were integrated in the same direction, a local change in =—= would affect

ds*
Egs. 11 and 13 only downstream of the point, whereas, when they are
integrated in ogpgsite direc.ions, the change is felt downstream due to
u(
the change in E§:~and upstreawm due to the effect on all preceding values

of M . The iteration method used was the Smelegt possible; a complete

calculatlon was made using the current guess of dS*(S*)’ and a second com-

plete calculation was made u51ng 1+2 times the current guess (where e<<l).

The results of these two calculations were used to make a point by point

du
linear extrapolation to that value of I5e giving agresmint between
equations 11 and 13, All of the ‘ndicated changes in —— were then

ds#*
reduced by a factor which decreased the largest fractional change to

B(B<l). There is no mathematical foundation for this iteration scheme,
but a rigorous extrapolation is so much more difficult that it was
decided to try this first. How well the method actually works is illus-
trated ir Figure 5. The problem here is the same as the one used to
demonstrate the direct method calculation, where the eigenvalue was
found to be Me0 = 6,55. The domain was taken to extend frogu *=0 to
$*=1.5 (at which point Me=Mem=6'0)' The initial guess of —= was

ds*
taken to be 0.3 everywhere. Initially, values of § = ,2, € = ,05 were
used. To speed convergence, B was changed to .05 after 8 iterations,
About 13 iterations werc re. ired to find the eigen-value to the same

number ~f significant figures*as the direct methoa. The agreement after

Patle

20 iterations between —jng— calculated from Eq, 1Y with that calcu-

lated from Eq, 13 is shown in Fig, 6. This agreem2nt was very good
near the origin, and was poorest at about $*=,9, Further iterations

failed to improve the agreement (which is hardly surprising considering
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du* dM
c

ds#* M dS*
compared with tzg direct method results in Flgs. 7 an§ 8. The agresment

the iteraticn method used). The values of

between d(ﬂ )/dS* from “quation 11 with A( L )/AS* from Equation 13
was best near the origin and was poorest at about S*=.7. In the region
between the origin and the last point plotted in Figs. 7 and 8, the maxi-
mum discrepancy between the two values is 10°/o.

It is interesting to note that the direct method solution could not
be carried beyond S*=,3 when four significant figures were required of
the profiles, while the indirect method, requiring the same number of
significant figures, was reasonably aCCUrate to 5% = ,5, In addition,
the errors in agreement between d ( ns 5 )/dS* and the finite differences
derivative appear to be distributed in such a way that the displacement
thicknesses far downstream, when calculated in the two different ways as
shown in Fig, 6, agree quite well,

The most surprising feature of this method is that it works at all,
even without considering the crudnessof the iteration scheme. The biggest
drawback is that the degree of convergence is limited, but it is pussible

that this can be improved by refining the iteration procedure,
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